The structure of higher sumsets

Merging together a result of Nathanson from the early 70s and a recent result of Granville and Walker, we show that for any finite set A of integers with \min (A)=0 and \gcd (A)=1 there exist two sets, the “head” and the “tail”, such that if m\ge \max (A)-|A|+2, then the m-fold sumset mA consists of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-12, Vol.150 (12), p.5165
1. Verfasser: Lev, Vsevolod
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Merging together a result of Nathanson from the early 70s and a recent result of Granville and Walker, we show that for any finite set A of integers with \min (A)=0 and \gcd (A)=1 there exist two sets, the “head” and the “tail”, such that if m\ge \max (A)-|A|+2, then the m-fold sumset mA consists of the union of the head, the appropriately shifted tail, and a long block of consecutive integers separating them. We give sharp estimates for the length of the block, and find all those sets A for which the bound \max (A)-|A|+2 cannot be substantially improved.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16128