First stability eigenvalue of singular hypersurfaces with constant mean curvature in the unit sphere
In this paper, we study the first eigenvalue of the stability operator on an integral n-varifold with constant mean curvature in the unit sphere \mathbb {S}^{n+1}. We find the optimal upper bound and prove a rigidity result characterizing the case when it is attained. This gives a new characterizati...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-02, Vol.151 (2), p.795-810 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the first eigenvalue of the stability operator on an integral n-varifold with constant mean curvature in the unit sphere \mathbb {S}^{n+1}. We find the optimal upper bound and prove a rigidity result characterizing the case when it is attained. This gives a new characterization for certain singular Clifford tori. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16120 |