First stability eigenvalue of singular hypersurfaces with constant mean curvature in the unit sphere

In this paper, we study the first eigenvalue of the stability operator on an integral n-varifold with constant mean curvature in the unit sphere \mathbb {S}^{n+1}. We find the optimal upper bound and prove a rigidity result characterizing the case when it is attained. This gives a new characterizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-02, Vol.151 (2), p.795-810
Hauptverfasser: Dung, Nguyen, Pyo, Juncheol, Tran, Hung
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the first eigenvalue of the stability operator on an integral n-varifold with constant mean curvature in the unit sphere \mathbb {S}^{n+1}. We find the optimal upper bound and prove a rigidity result characterizing the case when it is attained. This gives a new characterization for certain singular Clifford tori.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16120