Riesz-type criteria for the Riemann hypothesis

In 1916, Riesz proved that the Riemann Hypothesis is equivalent to the bound ∑n=1∞μ(n)n2exp⁡(−xn2)=Oϵ(x−34+ϵ)\sum _{n=1}^\infty \frac {\mu (n)}{n^2} \exp \left ( - \frac {x}{n^2} \right ) = O_{\epsilon } \left ( x^{-\frac {3}{4} + \epsilon } \right ), as x→∞x \rightarrow \infty, for any ϵ>0\epsil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-12, Vol.150 (12), p.5151-5163
Hauptverfasser: Agarwal, Archit, Garg, Meghali, Maji, Bibekananda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1916, Riesz proved that the Riemann Hypothesis is equivalent to the bound ∑n=1∞μ(n)n2exp⁡(−xn2)=Oϵ(x−34+ϵ)\sum _{n=1}^\infty \frac {\mu (n)}{n^2} \exp \left ( - \frac {x}{n^2} \right ) = O_{\epsilon } \left ( x^{-\frac {3}{4} + \epsilon } \right ), as x→∞x \rightarrow \infty, for any ϵ>0\epsilon >0. Around the same time, Hardy and Littlewood gave another equivalent criterion for the Riemann Hypothesis while correcting an identity of Ramanujan. In the present paper, we establish a one-variable generalization of the identity of Hardy and Littlewood and as an application, we provide Riesz-type criteria for the Riemann Hypothesis. In particular, we obtain the bound given by Riesz as well as the bound of Hardy and Littlewood.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16064