Existence and uniqueness theorems for some semi-linear equations on locally finite graphs

We study some semi-linear equations for the (m,p)-Laplacian operator on locally finite weighted graphs. We prove existence of weak solutions for all m\in \mathbb {N} and p\in (1,+\infty ) via a variational method already known in the literature by exploiting the continuity properties of the energy f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-11, Vol.150 (11), p.4757-4770
Hauptverfasser: Pinamonti, Andrea, Stefani, Giorgio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study some semi-linear equations for the (m,p)-Laplacian operator on locally finite weighted graphs. We prove existence of weak solutions for all m\in \mathbb {N} and p\in (1,+\infty ) via a variational method already known in the literature by exploiting the continuity properties of the energy functionals involved. When m=1, we also establish a uniqueness result in the spirit of the Brezis–Strauss Theorem. We finally provide some applications of our main results by dealing with some Yamabe-type and Kazdan–Warner-type equations on locally finite weighted graphs.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16046