Reflexivity for spaces of regular operators on Banach lattices
We prove that if Banach lattices EE and FF are reflexive and each positive linear operator from EE to FF is compact then Lr(E;F){\mathcal L}^r(E;F), the space of all regular linear operators from EE to FF, is reflexive. Conversely, if E∗E^\ast or FF has the bounded regular approximation property the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-11, Vol.150 (11), p.4811-4818 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if Banach lattices EE and FF are reflexive and each positive linear operator from EE to FF is compact then Lr(E;F){\mathcal L}^r(E;F), the space of all regular linear operators from EE to FF, is reflexive. Conversely, if E∗E^\ast or FF has the bounded regular approximation property then the reflexivity of Lr(E;F){\mathcal L}^r(E;F) implies that each positive linear operator from EE to FF is compact. Analogously we also study the reflexivity for the space of regular multilinear operators on Banach lattices. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16018 |