Reflexivity for spaces of regular operators on Banach lattices

We prove that if Banach lattices E and F are reflexive and each positive linear operator from E to F is compact then {\mathcal L}^r(E;F), the space of all regular linear operators from E to F, is reflexive. Conversely, if E^\ast or F has the bounded regular approximation property then the reflexivit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-11, Vol.150 (11), p.4811-4818
Hauptverfasser: Li, Yongjin, Bu, Qingying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that if Banach lattices E and F are reflexive and each positive linear operator from E to F is compact then {\mathcal L}^r(E;F), the space of all regular linear operators from E to F, is reflexive. Conversely, if E^\ast or F has the bounded regular approximation property then the reflexivity of {\mathcal L}^r(E;F) implies that each positive linear operator from E to F is compact. Analogously we also study the reflexivity for the space of regular multilinear operators on Banach lattices.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16018