Reflexivity for spaces of regular operators on Banach lattices
We prove that if Banach lattices E and F are reflexive and each positive linear operator from E to F is compact then {\mathcal L}^r(E;F), the space of all regular linear operators from E to F, is reflexive. Conversely, if E^\ast or F has the bounded regular approximation property then the reflexivit...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-11, Vol.150 (11), p.4811-4818 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if Banach lattices E and F are reflexive and each positive linear operator from E to F is compact then {\mathcal L}^r(E;F), the space of all regular linear operators from E to F, is reflexive. Conversely, if E^\ast or F has the bounded regular approximation property then the reflexivity of {\mathcal L}^r(E;F) implies that each positive linear operator from E to F is compact. Analogously we also study the reflexivity for the space of regular multilinear operators on Banach lattices. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16018 |