Congruent numbers and lower bounds on class numbers of real quadratic fields

We give effective lower bounds on caliber numbers of the parametric family of real quadratic fields \mathbb {Q}(\sqrt {t^4-n^2}) as t varies over positive integers for a congruent number n. Furthermore, we provide lower bounds on class numbers of Richaud-Degert type real quadratic fields of the form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-11, Vol.150 (11), p.4671-4684
Hauptverfasser: Kim, Jigu, Lee, Yoonjin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give effective lower bounds on caliber numbers of the parametric family of real quadratic fields \mathbb {Q}(\sqrt {t^4-n^2}) as t varies over positive integers for a congruent number n. Furthermore, we provide lower bounds on class numbers of Richaud-Degert type real quadratic fields of the form \mathbb {Q}(\sqrt {n^2k^4-1}) for positive integers k and congruent numbers n whose elliptic curves have algebraic rank greater than 2.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15993