Congruent numbers and lower bounds on class numbers of real quadratic fields
We give effective lower bounds on caliber numbers of the parametric family of real quadratic fields \mathbb {Q}(\sqrt {t^4-n^2}) as t varies over positive integers for a congruent number n. Furthermore, we provide lower bounds on class numbers of Richaud-Degert type real quadratic fields of the form...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-11, Vol.150 (11), p.4671-4684 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give effective lower bounds on caliber numbers of the parametric family of real quadratic fields \mathbb {Q}(\sqrt {t^4-n^2}) as t varies over positive integers for a congruent number n. Furthermore, we provide lower bounds on class numbers of Richaud-Degert type real quadratic fields of the form \mathbb {Q}(\sqrt {n^2k^4-1}) for positive integers k and congruent numbers n whose elliptic curves have algebraic rank greater than 2. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15993 |