Induced model structures for higher categories

We give a new criterion guaranteeing existence of model structures left-induced along a functor admitting both adjoints. This works under the hypothesis that the functor induces idempotent adjunctions at the homotopy category level. As an application, we construct new model structures on cubical set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-11, Vol.150 (11), p.4629-4644
Hauptverfasser: Hackney, Philip, Rovelli, Martina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a new criterion guaranteeing existence of model structures left-induced along a functor admitting both adjoints. This works under the hypothesis that the functor induces idempotent adjunctions at the homotopy category level. As an application, we construct new model structures on cubical sets, prederivators, marked simplicial sets and simplicial spaces modeling ∞\infty-categories and ∞\infty-groupoids.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15982