Induced model structures for higher categories
We give a new criterion guaranteeing existence of model structures left-induced along a functor admitting both adjoints. This works under the hypothesis that the functor induces idempotent adjunctions at the homotopy category level. As an application, we construct new model structures on cubical set...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-11, Vol.150 (11), p.4629-4644 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a new criterion guaranteeing existence of model structures left-induced along a functor admitting both adjoints. This works under the hypothesis that the functor induces idempotent adjunctions at the homotopy category level. As an application, we construct new model structures on cubical sets, prederivators, marked simplicial sets and simplicial spaces modeling ∞\infty-categories and ∞\infty-groupoids. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15982 |