A change of variable for Dahlberg-Kenig-Pipher operators
In the present article, we give a method to deal with Dahlberg-Kenig-Pipher (DPK) operators in boundary value problems on the upper half plane. We give a nice subclass of the weak DKP operators that generates the full class of weak DKP operators under the action of bi-Lipschitz changes of variable o...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-08, Vol.150 (8), p.3565-3579 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present article, we give a method to deal with Dahlberg-Kenig-Pipher (DPK) operators in boundary value problems on the upper half plane.
We give a nice subclass of the weak DKP operators that generates the full class of weak DKP operators under the action of bi-Lipschitz changes of variable on \mathbb {R}^n_+ that fix the boundary \mathbb {R}^{n-1}. Therefore, if one wants to prove a property on DKP operators which is stable by bi-Lipschitz transformations, one can directly assume that the operator belongs to the subclass. Our method gives an alternative proof to some past results and self-improves others beyond the existing literature. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15923 |