On the LS-category of product of Iwase's manifolds

Iwase [Topology 42 (2003), pp. 701–713] has constructed two 16-dimensional manifolds M_2 and M_3 with LS-category 3 which are counter-examples to Ganea’s conjecture: \operatorname {cat} (M\times S^n)=\operatorname {cat} M+1. We show that the manifold M_3 is a counter-example to the logarithmic law f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-05, Vol.150 (5), p.2209
1. Verfasser: Dranishnikov, Alexander
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iwase [Topology 42 (2003), pp. 701–713] has constructed two 16-dimensional manifolds M_2 and M_3 with LS-category 3 which are counter-examples to Ganea’s conjecture: \operatorname {cat} (M\times S^n)=\operatorname {cat} M+1. We show that the manifold M_3 is a counter-example to the logarithmic law for the LS-category of the square of a manifold: \operatorname {cat}(M\times M)=2\operatorname {cat} M. Also we construct a map of degree one \begin{equation*} f:2(M_3\times S^2\times S^{14})\#-(M_2\times S^2\times S^{14})\to M_2\times M_3 \end{equation*} which reduces Rudyak’s conjecture to the question whether \operatorname {cat}(M_2\times M_3)\ge 5 and show that \operatorname {cat}(M_2\times M_3)\ge 4.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15823