Which homotopy algebras come from transfer?
We characterize A∞A_\infty-structures that are equivalent to a given transferred structure over a chain homotopy equivalence or a quasi-isomorphism, answering a question posed by D. Sullivan. Along the way, we present an obstruction theory for weak \text{A∞A_\infty-morphisms} over an arbitrary commu...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-03, Vol.150 (3), p.975-990 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize A∞A_\infty-structures that are equivalent to a given transferred structure over a chain homotopy equivalence or a quasi-isomorphism, answering a question posed by D. Sullivan. Along the way, we present an obstruction theory for weak \text{A∞A_\infty-morphisms} over an arbitrary commutative ring. We then generalize our results to P∞\mathcal {P}_\infty-structures over a field of characteristic zero, for any quadratic Koszul operad P\mathcal {P}. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15710 |