Which homotopy algebras come from transfer?

We characterize A∞A_\infty-structures that are equivalent to a given transferred structure over a chain homotopy equivalence or a quasi-isomorphism, answering a question posed by D. Sullivan. Along the way, we present an obstruction theory for weak \text{A∞A_\infty-morphisms} over an arbitrary commu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-03, Vol.150 (3), p.975-990
Hauptverfasser: Markl, Martin, Rogers, Christopher L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize A∞A_\infty-structures that are equivalent to a given transferred structure over a chain homotopy equivalence or a quasi-isomorphism, answering a question posed by D. Sullivan. Along the way, we present an obstruction theory for weak \text{A∞A_\infty-morphisms} over an arbitrary commutative ring. We then generalize our results to P∞\mathcal {P}_\infty-structures over a field of characteristic zero, for any quadratic Koszul operad P\mathcal {P}.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15710