Numbers which are orders only of cyclic groups
We call n a cyclic number if every group of order n is cyclic. It is implicit in work of Dickson, and explicit in work of Szele, that n is cyclic precisely when \gcd (n,\phi (n))=1. With C(x) denoting the count of cyclic n\le x, Erdős proved that \[ C(x) \sim e^{-\gamma } x/\!\log \log \log {x}, \qu...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-02, Vol.150 (2), p.515-524 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We call n a cyclic number if every group of order n is cyclic. It is implicit in work of Dickson, and explicit in work of Szele, that n is cyclic precisely when \gcd (n,\phi (n))=1. With C(x) denoting the count of cyclic n\le x, Erdős proved that \[ C(x) \sim e^{-\gamma } x/\!\log \log \log {x}, \quad \text {as x\to \infty }. \] We show that C(x) has an asymptotic series expansion, in the sense of Poincaré, in descending powers of \log \log \log {x}, namely \[ \frac {e^{-\gamma } x}{\log \log \log {x}} \left (1\!-\!\frac {\gamma }{\log \log \log {x}} \!+\! \frac {\gamma ^2 + \frac {1}{12}\pi ^2}{(\log \log \log {x})^2} \!-\! \frac {\gamma ^3 +\frac {1}{4} \gamma \pi ^2 \!+\! \frac {2}{3}\zeta (3)}{(\log \log \log {x})^3} + \dots \right ). \] |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15658 |