Nodal solutions of Yamabe-type equations on positive Ricci curvature manifolds

We consider a closed cohomogeneity one Riemannian manifold (M^n,g) of dimension n\geq 3. If the Ricci curvature of M is positive, we prove the existence of infinite nodal solutions for equations of the form -\Delta _g u + \lambda u = \lambda u^q with \lambda >0, q>1. In particular for a positi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2021-10, Vol.149 (10), p.4419-4429
Hauptverfasser: Julio-Batalla, Jurgen, Petean, Jimmy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a closed cohomogeneity one Riemannian manifold (M^n,g) of dimension n\geq 3. If the Ricci curvature of M is positive, we prove the existence of infinite nodal solutions for equations of the form -\Delta _g u + \lambda u = \lambda u^q with \lambda >0, q>1. In particular for a positive Einstein manifold which is of cohomogeneity one or fibers over a cohomogeneity one Einstein manifold we prove the existence of infinite nodal solutions for the Yamabe equation, with a prescribed number of connected components of its nodal domain.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15548