Nodal solutions of Yamabe-type equations on positive Ricci curvature manifolds
We consider a closed cohomogeneity one Riemannian manifold (M^n,g) of dimension n\geq 3. If the Ricci curvature of M is positive, we prove the existence of infinite nodal solutions for equations of the form -\Delta _g u + \lambda u = \lambda u^q with \lambda >0, q>1. In particular for a positi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2021-10, Vol.149 (10), p.4419-4429 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a closed cohomogeneity one Riemannian manifold (M^n,g) of dimension n\geq 3. If the Ricci curvature of M is positive, we prove the existence of infinite nodal solutions for equations of the form -\Delta _g u + \lambda u = \lambda u^q with \lambda >0, q>1. In particular for a positive Einstein manifold which is of cohomogeneity one or fibers over a cohomogeneity one Einstein manifold we prove the existence of infinite nodal solutions for the Yamabe equation, with a prescribed number of connected components of its nodal domain. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15548 |