Adams’ inequality with logarithmic weights in ℝ
Trudinger-Moser inequality with logarithmic weight was first established by Calanchi and Ruf [J. Differential Equations 258 (2015), pp. 1967–1989]. The aim of this paper is to address the higher order version; more precisely, we show the following inequality sup u ∈ W 0 , r a d 2 , 2 ( B , ω ) , ‖ Δ...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2021-08, Vol.149 (8), p.3463-3472 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Trudinger-Moser inequality with logarithmic weight was first established by Calanchi and Ruf [J. Differential Equations 258 (2015), pp. 1967–1989]. The aim of this paper is to address the higher order version; more precisely, we show the following inequality
sup
u
∈
W
0
,
r
a
d
2
,
2
(
B
,
ω
)
,
‖
Δ
u
‖
ω
≤
1
∫
B
exp
(
α
|
u
|
2
1
−
β
)
d
x
>
+
∞
\begin{equation*} \sup _{u \in W_{0,rad}^{2,2}(B,\omega ),{{\left \| {\Delta u} \right \|}_\omega } \le 1} \int _B {\exp \left ( {\alpha {{\left | u \right |}^{\frac {2}{{1 - \beta }}} \right )} dx > + \infty \end{equation*}
holds if and only if
\[
α
≤
α
β
=
4
[
8
π
2
(
1
−
β
)
]
1
1
−
β
,
\alpha \le {\alpha _\beta } = 4{\left [ {8{\pi ^2}\left ( {1 - \beta } \right )} \right ]^{\frac {1}{{1 - \beta }}},
\]
where
B
B
denotes the unit ball in
R
4
\mathbb {R}^{4}
,
β
∈
(
0
,
1
)
\beta \in \left ( {0,1} \right )
,
ω
(
x
)
=
(
log
1
|
x
|
)
β
\omega \left ( x \right ) = {\left ( {\log \frac {1}{{\left | x \right |}}} \right )^\beta }
or
(
log
e
|
x
|
)
β
{\left ( {\log \frac {e}{{\left | x \right |}}} \right )^\beta }
, and
W
0
,
r
a
d
2
,
2
(
B
,
ω
)
W_{0,rad}^{2,2}(B,\omega )
is the weighted Sobolev spaces. Our proof is based on a suitable change of variable that allows us to represent the laplacian of
u
u
in terms of the second derivatives with respect to the new variable; this method was first used by Tarsi [Potential Anal. 37 (2012), pp. 353–385]. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15488 |