Metric rigidity of Kähler manifolds with lower Ricci bounds and almost maximal volume

In this short note we prove that a Kähler manifold with lower Ricci curvature bound and almost maximal volume is Gromov-Hausdorff close to the projective space with the Fubini-Study metric. This is done by combining the recent results on holomorphic rigidity of such Kähler manifolds (see Gang Liu [A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2021-08, Vol.149 (8), p.3569-3574
Hauptverfasser: Datar, Ved, Seshadri, Harish, Song, Jian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this short note we prove that a Kähler manifold with lower Ricci curvature bound and almost maximal volume is Gromov-Hausdorff close to the projective space with the Fubini-Study metric. This is done by combining the recent results on holomorphic rigidity of such Kähler manifolds (see Gang Liu [Asian J. Math. 18 (2014), 69–99]) with the structure theorem of Tian-Wang (see Gang Tian and Bing Wang [J. Amer. Math. Soc 28 (2015), 1169–1209]) for almost Einstein manifolds. This can be regarded as the complex analog of the result on Colding on the shape of Riemannian manifolds with almost maximal volume.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15473