Metric rigidity of Kähler manifolds with lower Ricci bounds and almost maximal volume
In this short note we prove that a Kähler manifold with lower Ricci curvature bound and almost maximal volume is Gromov-Hausdorff close to the projective space with the Fubini-Study metric. This is done by combining the recent results on holomorphic rigidity of such Kähler manifolds (see Gang Liu [A...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2021-08, Vol.149 (8), p.3569-3574 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this short note we prove that a Kähler manifold with lower Ricci curvature bound and almost maximal volume is Gromov-Hausdorff close to the projective space with the Fubini-Study metric. This is done by combining the recent results on holomorphic rigidity of such Kähler manifolds (see Gang Liu [Asian J. Math. 18 (2014), 69–99]) with the structure theorem of Tian-Wang (see Gang Tian and Bing Wang [J. Amer. Math. Soc 28 (2015), 1169–1209]) for almost Einstein manifolds. This can be regarded as the complex analog of the result on Colding on the shape of Riemannian manifolds with almost maximal volume. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15473 |