On the harmonic volume of Fermat curves
We prove that B. Harris’ harmonic volume of the Fermat curve of degree nn is of infinite order if nn has a prime divisor greater than 7. The statement is equivalent to the statement that the Griffiths’ Abel-Jacobi image of the Ceresa cycle of such a curve is of infinite order for every choice of bas...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2021-05, Vol.149 (5), p.1919-1928, Article 1919 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that B. Harris’ harmonic volume of the Fermat curve of degree nn is of infinite order if nn has a prime divisor greater than 7. The statement is equivalent to the statement that the Griffiths’ Abel-Jacobi image of the Ceresa cycle of such a curve is of infinite order for every choice of base point. In particular, these cycles are of infinite order modulo rational equivalence. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15332 |