Every planar set has a conformally removable subset with the same Hausdorff dimension
In this paper we show that given any compact set E \subset \hat {\mathbb{C}}, we can always find a conformally removable subset with the same Hausdorff dimension as E.
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2021-02, Vol.149 (2), p.787-791 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we show that given any compact set E \subset \hat {\mathbb{C}}, we can always find a conformally removable subset with the same Hausdorff dimension as E. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15243 |