Non-degeneracy for the critical Lane--Emden system
We prove the non-degeneracy for the critical Lane-Emden system \displaystyle -\Delta U = V^p,\quad -\Delta V = U^q,\quad U, V > 0\displaystyle \quad \text {in } \mathbb{R}^N for all N \ge 3 and p,q > 0 such that \frac {1}{p+1} + \frac {1}{q+1} = \frac {N-2}{N}. We show that all solutions to t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2021-01, Vol.149 (1), p.265-278 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the non-degeneracy for the critical Lane-Emden system \displaystyle -\Delta U = V^p,\quad -\Delta V = U^q,\quad U, V > 0\displaystyle \quad \text {in } \mathbb{R}^N for all N \ge 3 and p,q > 0 such that \frac {1}{p+1} + \frac {1}{q+1} = \frac {N-2}{N}. We show that all solutions to the linearized system around a ground state must arise from the symmetries of the critical Lane-Emden system provided that they belong to the corresponding energy space or they tend to zero at infinity. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15217 |