Non-degeneracy for the critical Lane--Emden system

We prove the non-degeneracy for the critical Lane-Emden system \displaystyle -\Delta U = V^p,\quad -\Delta V = U^q,\quad U, V > 0\displaystyle \quad \text {in } \mathbb{R}^N for all N \ge 3 and p,q > 0 such that \frac {1}{p+1} + \frac {1}{q+1} = \frac {N-2}{N}. We show that all solutions to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2021-01, Vol.149 (1), p.265-278
Hauptverfasser: Frank, Rupert, Kim, Seunghyeok, Pistoia, Angela
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the non-degeneracy for the critical Lane-Emden system \displaystyle -\Delta U = V^p,\quad -\Delta V = U^q,\quad U, V > 0\displaystyle \quad \text {in } \mathbb{R}^N for all N \ge 3 and p,q > 0 such that \frac {1}{p+1} + \frac {1}{q+1} = \frac {N-2}{N}. We show that all solutions to the linearized system around a ground state must arise from the symmetries of the critical Lane-Emden system provided that they belong to the corresponding energy space or they tend to zero at infinity.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15217