Coefficient multipliers in the Hardy space associated with Jacobi expansions

In this paper a multiplier theorem in the Hardy space H^1(\mathbb {T}) associated with Jacobi expansions of exponential type is proved, that is, a bilateral sequence \left \{\lambda _n\right \}_{n=-\infty }^{\infty } is a multiplier from H^1(\mathbb {T}) into the sequence space \ell ^1(\mathbb {Z})...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-01, Vol.151 (4), p.1527
Hauptverfasser: Shi, Yehao, Li, Zhongkai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a multiplier theorem in the Hardy space H^1(\mathbb {T}) associated with Jacobi expansions of exponential type is proved, that is, a bilateral sequence \left \{\lambda _n\right \}_{n=-\infty }^{\infty } is a multiplier from H^1(\mathbb {T}) into the sequence space \ell ^1(\mathbb {Z}) associated with Jacobi expansions of exponential type, if \[ \sup _N\sum _{k=1}^{\infty }\left (\sum _{kN
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15192