Coefficient multipliers in the Hardy space associated with Jacobi expansions
In this paper a multiplier theorem in the Hardy space H^1(\mathbb {T}) associated with Jacobi expansions of exponential type is proved, that is, a bilateral sequence \left \{\lambda _n\right \}_{n=-\infty }^{\infty } is a multiplier from H^1(\mathbb {T}) into the sequence space \ell ^1(\mathbb {Z})...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-01, Vol.151 (4), p.1527 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper a multiplier theorem in the Hardy space H^1(\mathbb {T}) associated with Jacobi expansions of exponential type is proved, that is, a bilateral sequence \left \{\lambda _n\right \}_{n=-\infty }^{\infty } is a multiplier from H^1(\mathbb {T}) into the sequence space \ell ^1(\mathbb {Z}) associated with Jacobi expansions of exponential type, if \[ \sup _N\sum _{k=1}^{\infty }\left (\sum _{kN |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15192 |