A reverse Minkowski-type inequality
The famous Minkowski inequality provides a sharp lower bound for the mixed volume V(K,M[n-1]) of two convex bodies K,M\subset \mathbb{R}^n in terms of powers of the volumes of the individual bodies K and M. The special case where K is the unit ball yields the isoperimetric inequality. In the plane,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-11, Vol.148 (11), p.4907-4922 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The famous Minkowski inequality provides a sharp lower bound for the mixed volume V(K,M[n-1]) of two convex bodies K,M\subset \mathbb{R}^n in terms of powers of the volumes of the individual bodies K and M. The special case where K is the unit ball yields the isoperimetric inequality. In the plane, Betke and Weil (1991) found a sharp upper bound for the mixed area of K and M in terms of the perimeters of K and M. We extend this result to general dimensions by proving a sharp upper bound for the mixed volume V(K,M[n-1]) in terms of the mean width of K and the surface area of M. The equality case is completely characterized. In addition, we establish a stability improvement of this and related geometric inequalities of isoperimetric-type. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15133 |