On the slope of non-algebraic holomorphic foliations
Let (Y, {\mathcal {G}}) be a Riccati foliation on Y and let \pi :(X,{\mathcal {F}}){\rightarrow } (Y,{\mathcal {G}}) be a double cover ramified over some normal-crossing curves. We will determine the minimal model of {\mathcal {F}} and compute its Chern numbers c_1^2({\mathcal {F}}), c_2({\mathcal {...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-11, Vol.148 (11), p.4817-4830, Article 4817 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (Y, {\mathcal {G}}) be a Riccati foliation on Y and let \pi :(X,{\mathcal {F}}){\rightarrow } (Y,{\mathcal {G}}) be a double cover ramified over some normal-crossing curves. We will determine the minimal model of {\mathcal {F}} and compute its Chern numbers c_1^2({\mathcal {F}}), c_2({\mathcal {F}}), and \chi ({\mathcal {F}})=(c_1^2({\mathcal {F}})+ c_2({\mathcal {F}}))/12. We will prove that the slope \lambda ({\mathcal {F}})=c_1^2({\mathcal {F}})/\chi ({\mathcal {F}}) satisfies 4\leq \lambda ({\mathcal {F}}) |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15097 |