Small prime th power residues
Let k ≥ 2 k\geq 2 be an integer. Let ϵ > 0 \epsilon >0 be given. It is widely believed that the smallest prime that is a k k th power residue modulo a prime q q should be O ( q ϵ ) O(q^{\epsilon }) for any ϵ > 0 \epsilon >0 . Elliott has proved that for large primes q ≡ 1 mod k q\equiv 1...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-09, Vol.148 (9), p.3801-3809 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
k
≥
2
k\geq 2
be an integer. Let
ϵ
>
0
\epsilon >0
be given. It is widely believed that the smallest prime that is a
k
k
th power residue modulo a prime
q
q
should be
O
(
q
ϵ
)
O(q^{\epsilon })
for any
ϵ
>
0
\epsilon >0
. Elliott has proved that for large primes
q
≡
1
mod
k
q\equiv 1\bmod k
such a prime is at most
q
k
−
1
4
+
ϵ
q^{\frac {k-1}{4}+\epsilon }
for each
ϵ
>
0
\epsilon >0
. We show that for large primes
q
≡
1
mod
k
q\equiv 1\bmod k
, the number of primes
p
≤
q
k
−
1
4
+
ϵ
p\leq q^{\frac {k-1}{4}+\epsilon }
such that
p
p
is a
k
k
th power residue
mod
q
\bmod \, q
is at least
q
9
ϵ
20
k
q^{\frac {9\epsilon }{20k}}
. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15011 |