Weighted enumeration of Bruhat chains in the symmetric group
We use the recently introduced padded Schubert polynomials to prove a common generalization of the fact that the weighted number of maximal chains in the strong Bruhat order on the symmetric group is (n2)!{n \choose 2}! for both the code weights and the Chevalley weights, generalizing a result of St...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-09, Vol.148 (9), p.3749-3759 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3759 |
---|---|
container_issue | 9 |
container_start_page | 3749 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 148 |
creator | Gaetz, Christian Gao, Yibo |
description | We use the recently introduced padded Schubert polynomials to prove a common generalization of the fact that the weighted number of maximal chains in the strong Bruhat order on the symmetric group is (n2)!{n \choose 2}! for both the code weights and the Chevalley weights, generalizing a result of Stembridge. We also define weights which give a one-parameter family of strong order analogues of Macdonald’s well-known reduced word identity for Schubert polynomials. |
doi_str_mv | 10.1090/proc/15005 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_15005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15005</sourcerecordid><originalsourceid>FETCH-LOGICAL-a261t-78e95776e780ff97307588e68eb08becfb07b5b0f88c58b3316d087b04b9909a3</originalsourceid><addsrcrecordid>eNp9j0tLAzEURoMoOFY3_oJs3Ahjb2Y6yQ240VIfUHCjuByS9KYz4jxIMov-e1vr2tXHB4cDh7FrAXcCNMzHMLi5qACqE5YJQMwlFvKUZQBQ5FqX-pxdxPi1v0IvVMbuP6ndNok2nPqpo2BSO_R88PwxTI1J3DWm7SNve54a4nHXdZRC6_g2DNN4yc68-Y509bcz9vG0el--5Ou359flwzo3hRQpV0i6UkqSQvBeqxJUhUgSyQJact6CspUFj-gqtGUp5AZQWVhYrUGbcsZuj14XhhgD-XoMbWfCrhZQH7rrQ3f9272Hb46w6eJ_3A-7BldH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weighted enumeration of Bruhat chains in the symmetric group</title><source>American Mathematical Society Publications</source><creator>Gaetz, Christian ; Gao, Yibo</creator><creatorcontrib>Gaetz, Christian ; Gao, Yibo</creatorcontrib><description>We use the recently introduced padded Schubert polynomials to prove a common generalization of the fact that the weighted number of maximal chains in the strong Bruhat order on the symmetric group is (n2)!{n \choose 2}! for both the code weights and the Chevalley weights, generalizing a result of Stembridge. We also define weights which give a one-parameter family of strong order analogues of Macdonald’s well-known reduced word identity for Schubert polynomials.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15005</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2020-09, Vol.148 (9), p.3749-3759</ispartof><rights>Copyright 2020 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a261t-78e95776e780ff97307588e68eb08becfb07b5b0f88c58b3316d087b04b9909a3</citedby><cites>FETCH-LOGICAL-a261t-78e95776e780ff97307588e68eb08becfb07b5b0f88c58b3316d087b04b9909a3</cites><orcidid>0000-0002-3748-4008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2020-148-09/S0002-9939-2020-15005-8/S0002-9939-2020-15005-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2020-148-09/S0002-9939-2020-15005-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77578,77588</link.rule.ids></links><search><creatorcontrib>Gaetz, Christian</creatorcontrib><creatorcontrib>Gao, Yibo</creatorcontrib><title>Weighted enumeration of Bruhat chains in the symmetric group</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>We use the recently introduced padded Schubert polynomials to prove a common generalization of the fact that the weighted number of maximal chains in the strong Bruhat order on the symmetric group is (n2)!{n \choose 2}! for both the code weights and the Chevalley weights, generalizing a result of Stembridge. We also define weights which give a one-parameter family of strong order analogues of Macdonald’s well-known reduced word identity for Schubert polynomials.</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLAzEURoMoOFY3_oJs3Ahjb2Y6yQ240VIfUHCjuByS9KYz4jxIMov-e1vr2tXHB4cDh7FrAXcCNMzHMLi5qACqE5YJQMwlFvKUZQBQ5FqX-pxdxPi1v0IvVMbuP6ndNok2nPqpo2BSO_R88PwxTI1J3DWm7SNve54a4nHXdZRC6_g2DNN4yc68-Y509bcz9vG0el--5Ou359flwzo3hRQpV0i6UkqSQvBeqxJUhUgSyQJact6CspUFj-gqtGUp5AZQWVhYrUGbcsZuj14XhhgD-XoMbWfCrhZQH7rrQ3f9272Hb46w6eJ_3A-7BldH</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Gaetz, Christian</creator><creator>Gao, Yibo</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3748-4008</orcidid></search><sort><creationdate>20200901</creationdate><title>Weighted enumeration of Bruhat chains in the symmetric group</title><author>Gaetz, Christian ; Gao, Yibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a261t-78e95776e780ff97307588e68eb08becfb07b5b0f88c58b3316d087b04b9909a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaetz, Christian</creatorcontrib><creatorcontrib>Gao, Yibo</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaetz, Christian</au><au>Gao, Yibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted enumeration of Bruhat chains in the symmetric group</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>148</volume><issue>9</issue><spage>3749</spage><epage>3759</epage><pages>3749-3759</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We use the recently introduced padded Schubert polynomials to prove a common generalization of the fact that the weighted number of maximal chains in the strong Bruhat order on the symmetric group is (n2)!{n \choose 2}! for both the code weights and the Chevalley weights, generalizing a result of Stembridge. We also define weights which give a one-parameter family of strong order analogues of Macdonald’s well-known reduced word identity for Schubert polynomials.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/15005</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3748-4008</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2020-09, Vol.148 (9), p.3749-3759 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_15005 |
source | American Mathematical Society Publications |
subjects | Research article |
title | Weighted enumeration of Bruhat chains in the symmetric group |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20enumeration%20of%20Bruhat%20chains%20in%20the%20symmetric%20group&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Gaetz,%20Christian&rft.date=2020-09-01&rft.volume=148&rft.issue=9&rft.spage=3749&rft.epage=3759&rft.pages=3749-3759&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15005&rft_dat=%3Cams_cross%3E10_1090_proc_15005%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |