Weighted enumeration of Bruhat chains in the symmetric group

We use the recently introduced padded Schubert polynomials to prove a common generalization of the fact that the weighted number of maximal chains in the strong Bruhat order on the symmetric group is (n2)!{n \choose 2}! for both the code weights and the Chevalley weights, generalizing a result of St...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2020-09, Vol.148 (9), p.3749-3759
Hauptverfasser: Gaetz, Christian, Gao, Yibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use the recently introduced padded Schubert polynomials to prove a common generalization of the fact that the weighted number of maximal chains in the strong Bruhat order on the symmetric group is (n2)!{n \choose 2}! for both the code weights and the Chevalley weights, generalizing a result of Stembridge. We also define weights which give a one-parameter family of strong order analogues of Macdonald’s well-known reduced word identity for Schubert polynomials.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15005