Weighted enumeration of Bruhat chains in the symmetric group
We use the recently introduced padded Schubert polynomials to prove a common generalization of the fact that the weighted number of maximal chains in the strong Bruhat order on the symmetric group is (n2)!{n \choose 2}! for both the code weights and the Chevalley weights, generalizing a result of St...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-09, Vol.148 (9), p.3749-3759 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the recently introduced padded Schubert polynomials to prove a common generalization of the fact that the weighted number of maximal chains in the strong Bruhat order on the symmetric group is (n2)!{n \choose 2}! for both the code weights and the Chevalley weights, generalizing a result of Stembridge. We also define weights which give a one-parameter family of strong order analogues of Macdonald’s well-known reduced word identity for Schubert polynomials. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15005 |