Asymptotically symmetric spaces with hereditarily non-unique spreading models

We examine a variant of a Banach space X0,11\mathfrak {X}^1_{0,1} defined by Argyros, Beanland, and the second-named author that has the property that it admits precisely two spreading models in every infinite dimensional subspace. We prove that this space is asymptotically symmetric and thus it pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2020-01, Vol.148 (4), p.1697-1707
Hauptverfasser: Kutzarova, Denka, Motakis, Pavlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine a variant of a Banach space X0,11\mathfrak {X}^1_{0,1} defined by Argyros, Beanland, and the second-named author that has the property that it admits precisely two spreading models in every infinite dimensional subspace. We prove that this space is asymptotically symmetric and thus it provides a negative answer to a problem of Junge, the first-named author, and Odell.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/14855