Asymptotically symmetric spaces with hereditarily non-unique spreading models
We examine a variant of a Banach space X0,11\mathfrak {X}^1_{0,1} defined by Argyros, Beanland, and the second-named author that has the property that it admits precisely two spreading models in every infinite dimensional subspace. We prove that this space is asymptotically symmetric and thus it pro...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-01, Vol.148 (4), p.1697-1707 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examine a variant of a Banach space X0,11\mathfrak {X}^1_{0,1} defined by Argyros, Beanland, and the second-named author that has the property that it admits precisely two spreading models in every infinite dimensional subspace. We prove that this space is asymptotically symmetric and thus it provides a negative answer to a problem of Junge, the first-named author, and Odell. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14855 |