Clark measures on the torus
Let D\mathbb {D} denote the unit disc of C\mathbb {C} and let T=∂D\mathbb {T}= \partial \mathbb {D}. Given a holomorphic function φ:Dn→D\varphi : \mathbb {D}^n \to \mathbb {D}, n≥2n\ge 2, we study the corresponding family σα[φ]\sigma _\alpha [\varphi ], α∈T\alpha \in \mathbb {T}, of Clark measures o...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-05, Vol.148 (5), p.2009-2017 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2017 |
---|---|
container_issue | 5 |
container_start_page | 2009 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 148 |
creator | Doubtsov, Evgueni |
description | Let D\mathbb {D} denote the unit disc of C\mathbb {C} and let T=∂D\mathbb {T}= \partial \mathbb {D}. Given a holomorphic function φ:Dn→D\varphi : \mathbb {D}^n \to \mathbb {D}, n≥2n\ge 2, we study the corresponding family σα[φ]\sigma _\alpha [\varphi ], α∈T\alpha \in \mathbb {T}, of Clark measures on the torus Tn\mathbb {T}^n. If φ\varphi is an inner function, then we introduce and investigate related isometric operators TαT_\alpha mapping analogs of model spaces into L2(σα)L^2(\sigma _\alpha ), α∈T\alpha \in \mathbb {T}. |
doi_str_mv | 10.1090/proc/14846 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_14846</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-c7cc3472fd51ee37d299fadabf800468638acdaf2f48774381a9dfa1c8725eab3</originalsourceid><addsrcrecordid>eNp9jztLA0EURgdRcI02tjbb2AiT3Hlk5k4pi1EhkEbr4WYe-Mi6YWZT-O9NjLXVxweHA4exawFTAQ5m2zKEmdCozQlrBCByg9KcsgYAJHdOuXN2UevH_gqnbcNuug2Vz7ZPVHcl1Xb4ase31I5D2dVLdpZpU9PV307Y6-LhpXviy9Xjc3e_5CSdHXmwIShtZY5zkZKyUTqXKdI6I4A2aBRSiJRl1mitVijIxUwioJXzRGs1YXdHbyhDrSVlvy3vPZVvL8Afsvwhy_9m7eHbI0x9_Y_7AXDWTAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clark measures on the torus</title><source>American Mathematical Society Publications</source><creator>Doubtsov, Evgueni</creator><creatorcontrib>Doubtsov, Evgueni</creatorcontrib><description>Let D\mathbb {D} denote the unit disc of C\mathbb {C} and let T=∂D\mathbb {T}= \partial \mathbb {D}. Given a holomorphic function φ:Dn→D\varphi : \mathbb {D}^n \to \mathbb {D}, n≥2n\ge 2, we study the corresponding family σα[φ]\sigma _\alpha [\varphi ], α∈T\alpha \in \mathbb {T}, of Clark measures on the torus Tn\mathbb {T}^n. If φ\varphi is an inner function, then we introduce and investigate related isometric operators TαT_\alpha mapping analogs of model spaces into L2(σα)L^2(\sigma _\alpha ), α∈T\alpha \in \mathbb {T}.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14846</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2020-05, Vol.148 (5), p.2009-2017</ispartof><rights>Copyright 2019 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a297t-c7cc3472fd51ee37d299fadabf800468638acdaf2f48774381a9dfa1c8725eab3</citedby><cites>FETCH-LOGICAL-a297t-c7cc3472fd51ee37d299fadabf800468638acdaf2f48774381a9dfa1c8725eab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2020-148-05/S0002-9939-2019-14846-2/S0002-9939-2019-14846-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2020-148-05/S0002-9939-2019-14846-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77579,77589</link.rule.ids></links><search><creatorcontrib>Doubtsov, Evgueni</creatorcontrib><title>Clark measures on the torus</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>Let D\mathbb {D} denote the unit disc of C\mathbb {C} and let T=∂D\mathbb {T}= \partial \mathbb {D}. Given a holomorphic function φ:Dn→D\varphi : \mathbb {D}^n \to \mathbb {D}, n≥2n\ge 2, we study the corresponding family σα[φ]\sigma _\alpha [\varphi ], α∈T\alpha \in \mathbb {T}, of Clark measures on the torus Tn\mathbb {T}^n. If φ\varphi is an inner function, then we introduce and investigate related isometric operators TαT_\alpha mapping analogs of model spaces into L2(σα)L^2(\sigma _\alpha ), α∈T\alpha \in \mathbb {T}.</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9jztLA0EURgdRcI02tjbb2AiT3Hlk5k4pi1EhkEbr4WYe-Mi6YWZT-O9NjLXVxweHA4exawFTAQ5m2zKEmdCozQlrBCByg9KcsgYAJHdOuXN2UevH_gqnbcNuug2Vz7ZPVHcl1Xb4ase31I5D2dVLdpZpU9PV307Y6-LhpXviy9Xjc3e_5CSdHXmwIShtZY5zkZKyUTqXKdI6I4A2aBRSiJRl1mitVijIxUwioJXzRGs1YXdHbyhDrSVlvy3vPZVvL8Afsvwhy_9m7eHbI0x9_Y_7AXDWTAM</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Doubtsov, Evgueni</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Clark measures on the torus</title><author>Doubtsov, Evgueni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-c7cc3472fd51ee37d299fadabf800468638acdaf2f48774381a9dfa1c8725eab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doubtsov, Evgueni</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doubtsov, Evgueni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clark measures on the torus</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>148</volume><issue>5</issue><spage>2009</spage><epage>2017</epage><pages>2009-2017</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Let D\mathbb {D} denote the unit disc of C\mathbb {C} and let T=∂D\mathbb {T}= \partial \mathbb {D}. Given a holomorphic function φ:Dn→D\varphi : \mathbb {D}^n \to \mathbb {D}, n≥2n\ge 2, we study the corresponding family σα[φ]\sigma _\alpha [\varphi ], α∈T\alpha \in \mathbb {T}, of Clark measures on the torus Tn\mathbb {T}^n. If φ\varphi is an inner function, then we introduce and investigate related isometric operators TαT_\alpha mapping analogs of model spaces into L2(σα)L^2(\sigma _\alpha ), α∈T\alpha \in \mathbb {T}.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/14846</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2020-05, Vol.148 (5), p.2009-2017 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_14846 |
source | American Mathematical Society Publications |
subjects | Research article |
title | Clark measures on the torus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clark%20measures%20on%20the%20torus&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Doubtsov,%20Evgueni&rft.date=2020-05-01&rft.volume=148&rft.issue=5&rft.spage=2009&rft.epage=2017&rft.pages=2009-2017&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14846&rft_dat=%3Cams_cross%3E10_1090_proc_14846%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |