Clark measures on the torus
Let \mathbb{D} denote the unit disc of \mathbb{C} and let \mathbb{T}= \partial \mathbb{D}. Given a holomorphic function \varphi : \mathbb{D}^n \to \mathbb{D}, n\ge 2, we study the corresponding family \sigma _\alpha [\varphi ], \alpha \in \mathbb{T}, of Clark measures on the torus \mathbb{T}^n. If \...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-05, Vol.148 (5), p.2009-2017 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \mathbb{D} denote the unit disc of \mathbb{C} and let \mathbb{T}= \partial \mathbb{D}. Given a holomorphic function \varphi : \mathbb{D}^n \to \mathbb{D}, n\ge 2, we study the corresponding family \sigma _\alpha [\varphi ], \alpha \in \mathbb{T}, of Clark measures on the torus \mathbb{T}^n. If \varphi is an inner function, then we introduce and investigate related isometric operators T_\alpha mapping analogs of model spaces into L^2(\sigma _\alpha ), \alpha \in \mathbb{T}. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14846 |