On the structure of the Sally module and the second normal Hilbert coefficient
The Hilbert coefficients of the normal filtration give important geometric information on the base ring like the pseudo-rationality. The Sally module was introduced by W.V. Vasconcelos and it is useful to connect the Hilbert coefficients to the homological properties of the associated graded module...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-07, Vol.148 (7), p.2757-2771 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Hilbert coefficients of the normal filtration give important geometric information on the base ring like the pseudo-rationality. The Sally module was introduced by W.V. Vasconcelos and it is useful to connect the Hilbert coefficients to the homological properties of the associated graded module of a Noetherian filtration. In this paper we give a complete structure of the Sally module in the case the second normal Hilbert coefficient attains almost minimal value in an analytically unramified Cohen-Macaulay local ring. As a consequence, in this case we present a complete description of the Hilbert function of the associated graded ring of the normal filtration. A deep analysis of the vanishing of the third normal Hilbert coefficient has been necessary. This study is related to a longstanding conjecture stated by S. Itoh. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14839 |