On ordered factorizations into distinct parts
Let g(n) denote the number of ordered factorizations of n into integers larger than 1. In the 1930s, Kalmár and Hille investigated the average and maximal orders of g(n). In this note we examine these questions for the function G(n) counting ordered factorizations into distinct parts. Concerning the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-04, Vol.148 (4), p.1447-1453 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let g(n) denote the number of ordered factorizations of n into integers larger than 1. In the 1930s, Kalmár and Hille investigated the average and maximal orders of g(n). In this note we examine these questions for the function G(n) counting ordered factorizations into distinct parts. Concerning the average of G(n), we show that as x\to \infty , \displaystyle \sum _{n \le x} G(n) = x \cdot L(x)^{1+o(1)}, where \displaystyle L(x) = \exp \left (\log {x} \cdot \frac {\log \log \log {x}}{\log \log {x}}\right ). It follows immediately that G(n) \le n \cdot L(n)^{1+o(1)}, as n\to \infty . We show that equality holds here on a sequence of n tending to infinity, so that n \cdot L(n)^{1+o(1)} represents the maximal order of G(n). |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14817 |