Predicatively unprovable termination of the Ackermannian Goodstein process
The classical Goodstein process gives rise to long but finite sequences of natural numbers whose termination is not provable in Peano arithmetic. In this manuscript we consider a variant based on the Ackermann function. We show that Ackermannian Goodstein sequences eventually terminate, but this fac...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-08, Vol.148 (8), p.3567-3582 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The classical Goodstein process gives rise to long but finite sequences of natural numbers whose termination is not provable in Peano arithmetic. In this manuscript we consider a variant based on the Ackermann function. We show that Ackermannian Goodstein sequences eventually terminate, but this fact is not provable using predicative means. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14813 |