Guessing models imply the singular cardinal hypothesis
In this article we prove three main theorems: (1) guessing models are internally unbounded, (2) for any regular cardinal \kappa \ge \omega _2, \mathsf {ISP}(\kappa ) implies that \mathsf {SCH} holds above \kappa , and (3) forcing posets which have the \omega _1-approximation property also have the c...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2019-12, Vol.147 (12), p.5427-5434 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we prove three main theorems: (1) guessing models are internally unbounded, (2) for any regular cardinal \kappa \ge \omega _2, \mathsf {ISP}(\kappa ) implies that \mathsf {SCH} holds above \kappa , and (3) forcing posets which have the \omega _1-approximation property also have the countable covering property. These results solve open problems of Viale [Ann. Pure Appl. Logic 163 (2012), no. 11, 1660-1678] and Hachtman and Sinapova [J. Symb. Log. 84 (2019), no. 2, 713-725]. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14739 |