Diagonal subalgebras of residual intersections
Let \mathsf {k} be a field, let S be a bigraded \mathsf {k}-algebra, and let S_\Delta denote the diagonal subalgebra of S corresponding to \Delta = \{ (cs,es) \; \vert \; s \in \mathbb{Z} \}. It is known that the S_\Delta is Koszul for c,e \gg 0. In this article, we find bounds for c,e for S_\Delta...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-01, Vol.148 (1), p.41-52 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \mathsf {k} be a field, let S be a bigraded \mathsf {k}-algebra, and let S_\Delta denote the diagonal subalgebra of S corresponding to \Delta = \{ (cs,es) \; \vert \; s \in \mathbb{Z} \}. It is known that the S_\Delta is Koszul for c,e \gg 0. In this article, we find bounds for c,e for S_\Delta to be Koszul when S is a geometric residual intersection. Furthermore, we also study the Cohen-Macaulay property of these algebras. Finally, as an application, we look at classes of linearly presented perfect ideals of height two in a polynomial ring, show that all their powers have a linear resolution, and study the Koszul and Cohen-Macaulay properties of the diagonal subalgebras of their Rees algebras. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14705 |