On the irreducibility of Severi varieties on 3 surfaces
Let ( S , L ) (S,L) be a polarized K 3 K3 surface of genus p ⩾ 11 p \geqslant 11 such that Pic ( S ) = Z [ L ] \textrm {Pic}(S)=\mathbf {Z}[L] and δ \delta is a non-negative integer. We prove that if p ⩾ 4 δ − 3 p\geqslant 4\delta -3 , then the Severi variety of δ \delta -nodal curves in | L | |L| i...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2019-10, Vol.147 (10), p.4233-4244 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
S
,
L
)
(S,L)
be a polarized
K
3
K3
surface of genus
p
⩾
11
p \geqslant 11
such that
Pic
(
S
)
=
Z
[
L
]
\textrm {Pic}(S)=\mathbf {Z}[L]
and
δ
\delta
is a non-negative integer. We prove that if
p
⩾
4
δ
−
3
p\geqslant 4\delta -3
, then the Severi variety of
δ
\delta
-nodal curves in
|
L
|
|L|
is irreducible. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14559 |