Characterizations of cancellable groups

An abelian group A is said to be cancellable if whenever A \oplus G is isomorphic to A \oplus H, G is isomorphic to H. We show that the index set of cancellable rank 1 torsion-free abelian groups is \Pi ^0_4 m-complete, showing that the classification by Fuchs and Loonstra cannot be simplified. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2019-08, Vol.147 (8), p.3533-3545
Hauptverfasser: Matthew Harrison-Trainor, Meng-Che "Turbo" Ho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3545
container_issue 8
container_start_page 3533
container_title Proceedings of the American Mathematical Society
container_volume 147
creator Matthew Harrison-Trainor
Meng-Che "Turbo" Ho
description An abelian group A is said to be cancellable if whenever A \oplus G is isomorphic to A \oplus H, G is isomorphic to H. We show that the index set of cancellable rank 1 torsion-free abelian groups is \Pi ^0_4 m-complete, showing that the classification by Fuchs and Loonstra cannot be simplified. For arbitrary non-finitely generated groups, we show that the cancellation property is \Pi ^1_1 m-hard; we know of no upper bound, but we conjecture that it is \Pi ^1_2 m-complete.
doi_str_mv 10.1090/proc/14546
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_14546</sourcerecordid><originalsourceid>FETCH-LOGICAL-a261t-4e07c0d9c4c42f75e48f1e7bbce6049a48e8c31a5cb3b3ba4b0a53ccd75ff6c13</originalsourceid><addsrcrecordid>eNp9j8FKxDAURYMoWEc3fkE3Igh1XtokTZZSHBUG3Oi6vLx50UpnWpK60K-347iWu7hcOFw4QlxKuJXgYDnGgZZSaWWORCbB2sLY0hyLDADKwrnKnYqzlD7mKZ2qM3HdvGNEmjh23zh1wy7lQ8gJd8R9j77n_C0On2M6FycB-8QXf70Qr6v7l-axWD8_PDV36wJLI6dCMdQEG0eKVBlqzcoGybX3xAaUQ2XZUiVRk6_moPKAuiLa1DoEQ7JaiJvDL8UhpcihHWO3xfjVSmj3iu1esf1VnOGrA4zb9B_3A2quUU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterizations of cancellable groups</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Mathematical Society Publications</source><creator>Matthew Harrison-Trainor ; Meng-Che "Turbo" Ho</creator><creatorcontrib>Matthew Harrison-Trainor ; Meng-Che "Turbo" Ho</creatorcontrib><description>An abelian group A is said to be cancellable if whenever A \oplus G is isomorphic to A \oplus H, G is isomorphic to H. We show that the index set of cancellable rank 1 torsion-free abelian groups is \Pi ^0_4 m-complete, showing that the classification by Fuchs and Loonstra cannot be simplified. For arbitrary non-finitely generated groups, we show that the cancellation property is \Pi ^1_1 m-hard; we know of no upper bound, but we conjecture that it is \Pi ^1_2 m-complete.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14546</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2019-08, Vol.147 (8), p.3533-3545</ispartof><rights>Copyright 2019, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a261t-4e07c0d9c4c42f75e48f1e7bbce6049a48e8c31a5cb3b3ba4b0a53ccd75ff6c13</citedby><cites>FETCH-LOGICAL-a261t-4e07c0d9c4c42f75e48f1e7bbce6049a48e8c31a5cb3b3ba4b0a53ccd75ff6c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2019-147-08/S0002-9939-2019-14546-9/S0002-9939-2019-14546-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2019-147-08/S0002-9939-2019-14546-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Matthew Harrison-Trainor</creatorcontrib><creatorcontrib>Meng-Che "Turbo" Ho</creatorcontrib><title>Characterizations of cancellable groups</title><title>Proceedings of the American Mathematical Society</title><description>An abelian group A is said to be cancellable if whenever A \oplus G is isomorphic to A \oplus H, G is isomorphic to H. We show that the index set of cancellable rank 1 torsion-free abelian groups is \Pi ^0_4 m-complete, showing that the classification by Fuchs and Loonstra cannot be simplified. For arbitrary non-finitely generated groups, we show that the cancellation property is \Pi ^1_1 m-hard; we know of no upper bound, but we conjecture that it is \Pi ^1_2 m-complete.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j8FKxDAURYMoWEc3fkE3Igh1XtokTZZSHBUG3Oi6vLx50UpnWpK60K-347iWu7hcOFw4QlxKuJXgYDnGgZZSaWWORCbB2sLY0hyLDADKwrnKnYqzlD7mKZ2qM3HdvGNEmjh23zh1wy7lQ8gJd8R9j77n_C0On2M6FycB-8QXf70Qr6v7l-axWD8_PDV36wJLI6dCMdQEG0eKVBlqzcoGybX3xAaUQ2XZUiVRk6_moPKAuiLa1DoEQ7JaiJvDL8UhpcihHWO3xfjVSmj3iu1esf1VnOGrA4zb9B_3A2quUU0</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Matthew Harrison-Trainor</creator><creator>Meng-Che "Turbo" Ho</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190801</creationdate><title>Characterizations of cancellable groups</title><author>Matthew Harrison-Trainor ; Meng-Che "Turbo" Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a261t-4e07c0d9c4c42f75e48f1e7bbce6049a48e8c31a5cb3b3ba4b0a53ccd75ff6c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthew Harrison-Trainor</creatorcontrib><creatorcontrib>Meng-Che "Turbo" Ho</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthew Harrison-Trainor</au><au>Meng-Che "Turbo" Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizations of cancellable groups</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>147</volume><issue>8</issue><spage>3533</spage><epage>3545</epage><pages>3533-3545</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>An abelian group A is said to be cancellable if whenever A \oplus G is isomorphic to A \oplus H, G is isomorphic to H. We show that the index set of cancellable rank 1 torsion-free abelian groups is \Pi ^0_4 m-complete, showing that the classification by Fuchs and Loonstra cannot be simplified. For arbitrary non-finitely generated groups, we show that the cancellation property is \Pi ^1_1 m-hard; we know of no upper bound, but we conjecture that it is \Pi ^1_2 m-complete.</abstract><doi>10.1090/proc/14546</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2019-08, Vol.147 (8), p.3533-3545
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_14546
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Mathematical Society Publications
title Characterizations of cancellable groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizations%20of%20cancellable%20groups&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Matthew%20Harrison-Trainor&rft.date=2019-08-01&rft.volume=147&rft.issue=8&rft.spage=3533&rft.epage=3545&rft.pages=3533-3545&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14546&rft_dat=%3Cams_cross%3E10_1090_proc_14546%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true