Characterizations of cancellable groups

An abelian group A is said to be cancellable if whenever A \oplus G is isomorphic to A \oplus H, G is isomorphic to H. We show that the index set of cancellable rank 1 torsion-free abelian groups is \Pi ^0_4 m-complete, showing that the classification by Fuchs and Loonstra cannot be simplified. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2019-08, Vol.147 (8), p.3533-3545
Hauptverfasser: Matthew Harrison-Trainor, Meng-Che "Turbo" Ho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An abelian group A is said to be cancellable if whenever A \oplus G is isomorphic to A \oplus H, G is isomorphic to H. We show that the index set of cancellable rank 1 torsion-free abelian groups is \Pi ^0_4 m-complete, showing that the classification by Fuchs and Loonstra cannot be simplified. For arbitrary non-finitely generated groups, we show that the cancellation property is \Pi ^1_1 m-hard; we know of no upper bound, but we conjecture that it is \Pi ^1_2 m-complete.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/14546