Characterizations of cancellable groups
An abelian group A is said to be cancellable if whenever A \oplus G is isomorphic to A \oplus H, G is isomorphic to H. We show that the index set of cancellable rank 1 torsion-free abelian groups is \Pi ^0_4 m-complete, showing that the classification by Fuchs and Loonstra cannot be simplified. For...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2019-08, Vol.147 (8), p.3533-3545 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An abelian group A is said to be cancellable if whenever A \oplus G is isomorphic to A \oplus H, G is isomorphic to H. We show that the index set of cancellable rank 1 torsion-free abelian groups is \Pi ^0_4 m-complete, showing that the classification by Fuchs and Loonstra cannot be simplified. For arbitrary non-finitely generated groups, we show that the cancellation property is \Pi ^1_1 m-hard; we know of no upper bound, but we conjecture that it is \Pi ^1_2 m-complete. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14546 |