Optimal bounds on the fundamental spectral gap with single-well potentials
We characterize the potential-energy functions V(x) that minimize the gap \Gamma between the two lowest Sturm-Liouville eigenvalues for \[ H(p,V) u ≔-\frac {d}{dx} \left (p(x)\frac {du}{dx}\right )+V(x) u = \lambda u, \quad \quad x\in [0,\pi ], \] where separated self-adjoint boundary conditions are...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-02, Vol.150 (2), p.575-587 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the potential-energy functions V(x) that minimize the gap \Gamma between the two lowest Sturm-Liouville eigenvalues for \[ H(p,V) u ≔-\frac {d}{dx} \left (p(x)\frac {du}{dx}\right )+V(x) u = \lambda u, \quad \quad x\in [0,\pi ], \] where separated self-adjoint boundary conditions are imposed at end points, and V is subject to various assumptions, especially convexity or having a “single-well” form. In the classic case where p=1 we recover with different arguments the result of Lavine that \Gamma is uniquely minimized among convex V by constant potentials, and in the case of single-well potentials, with no restrictions on the position of the minimum, we obtain a new, sharp bound, that \Gamma > 2.04575\dots. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14501 |