On an observation of Sibony

It is shown that if the boundary of a Reinhardt domain in \mathbb{C}^n contains the origin, then the origin has a neighborhood to which each holomorphic function on the domain which is infinitely many times differentiable up to the boundary extends holomorphically.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2019-08, Vol.147 (8), p.3451-3454
1. Verfasser: CHAKRABARTI, DEBRAJ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that if the boundary of a Reinhardt domain in \mathbb{C}^n contains the origin, then the origin has a neighborhood to which each holomorphic function on the domain which is infinitely many times differentiable up to the boundary extends holomorphically.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/14476