On an observation of Sibony
It is shown that if the boundary of a Reinhardt domain in \mathbb{C}^n contains the origin, then the origin has a neighborhood to which each holomorphic function on the domain which is infinitely many times differentiable up to the boundary extends holomorphically.
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2019-08, Vol.147 (8), p.3451-3454 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that if the boundary of a Reinhardt domain in \mathbb{C}^n contains the origin, then the origin has a neighborhood to which each holomorphic function on the domain which is infinitely many times differentiable up to the boundary extends holomorphically. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14476 |