Functorial compactification of linear spaces

We define compactifications of vector spaces which are functorial with respect to certain linear maps. These ``many-body'' compactifications are manifolds with corners, and the linear maps lift to b-maps in the sense of Melrose. We derive a simple criterion under which the lifted maps are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2019-09, Vol.147 (9), p.4067-4081
1. Verfasser: Kottke, Chris
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define compactifications of vector spaces which are functorial with respect to certain linear maps. These ``many-body'' compactifications are manifolds with corners, and the linear maps lift to b-maps in the sense of Melrose. We derive a simple criterion under which the lifted maps are in fact b-fibrations, and identify how these restrict to boundary hypersurfaces. This theory is an application of a general result on the iterated blow-up of cleanly intersecting submanifolds which extends related results in the literature.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/14452