Dimension dependence of factorization problems: Biparameter Hardy spaces
Given 1 \leq p,q < \infty , and n\in \mathbb{N}_0, let H_n^p(H_n^q) denote the finite-dimensional building blocks of the biparameter dyadic Hardy space H^p(H^q). Let (V_n : n\in \mathbb{N}_0) denote either \bigl (H_n^p(H_n^q) : n\in \mathbb{N}_0\bigr ) or \bigl ( (H_n^p(H_n^q))^* : n\in \mathbb{N...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2019-04, Vol.147 (4), p.1639-1652 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given 1 \leq p,q < \infty , and n\in \mathbb{N}_0, let H_n^p(H_n^q) denote the finite-dimensional building blocks of the biparameter dyadic Hardy space H^p(H^q). Let (V_n : n\in \mathbb{N}_0) denote either \bigl (H_n^p(H_n^q) : n\in \mathbb{N}_0\bigr ) or \bigl ( (H_n^p(H_n^q))^* : n\in \mathbb{N}_0\bigr ). We show that the identity operator on V_n factors through any operator T : V_N\to V_N which has a large diagonal with respect to the Haar system, where N depends linearly on n. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14364 |