Multiple solutions for a class of nonhomogeneous semilinear equations with critical cone Sobolev exponent

In this paper, we deal with the study of a class of semilinear and nonhomogeneous Schrödinger equations on a manifold with conical singularity. We provide a suitable constant by Sobolev embedding constant and the critical cone Sobolev exponent with respect to the nonhomogeneous term g(x)∈L2n2(B).g(x...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2019-02, Vol.147 (2), p.597-608
Hauptverfasser: Koozehgar Kalleji, Morteza, Alimohammady, Mohsen, Jafari, Ali Asghar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we deal with the study of a class of semilinear and nonhomogeneous Schrödinger equations on a manifold with conical singularity. We provide a suitable constant by Sobolev embedding constant and the critical cone Sobolev exponent with respect to the nonhomogeneous term g(x)∈L2n2(B).g(x)\in L^{\frac {n}{2}}_{2}(\mathbb {B}). Our approach improves on and generalizes the previous results in [Indian J. Pure Appl. Math. 48 (2017), pp. 133–146] and [Ann. Global Anal. Geom. 39 (2011), pp. 27–43].
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/14332