Multiple solutions for a class of nonhomogeneous semilinear equations with critical cone Sobolev exponent
In this paper, we deal with the study of a class of semilinear and nonhomogeneous Schrödinger equations on a manifold with conical singularity. We provide a suitable constant by Sobolev embedding constant and the critical cone Sobolev exponent with respect to the nonhomogeneous term g(x)∈L2n2(B).g(x...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2019-02, Vol.147 (2), p.597-608 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we deal with the study of a class of semilinear and nonhomogeneous Schrödinger equations on a manifold with conical singularity. We provide a suitable constant by Sobolev embedding constant and the critical cone Sobolev exponent with respect to the nonhomogeneous term g(x)∈L2n2(B).g(x)\in L^{\frac {n}{2}}_{2}(\mathbb {B}). Our approach improves on and generalizes the previous results in [Indian J. Pure Appl. Math. 48 (2017), pp. 133–146] and [Ann. Global Anal. Geom. 39 (2011), pp. 27–43]. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14332 |