SUPERCONGRUENCES FOR POLYNOMIAL ANALOGS OF THE APÉRY NUMBERS
We consider a family of polynomial analogs of the Apéry numbers, which includes q-analogs due to Krattenthaler–Rivoal–Zudilin and Zheng, and show that the supercongruences that Gessel and Mimura established for the Apéry numbers generalize to these polynomials. Our proof relies on polynomial analogs...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2019-03, Vol.147 (3), p.1023-1036 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a family of polynomial analogs of the Apéry numbers, which includes q-analogs due to Krattenthaler–Rivoal–Zudilin and Zheng, and show that the supercongruences that Gessel and Mimura established for the Apéry numbers generalize to these polynomials. Our proof relies on polynomial analogs of classical binomial congruences of Wolstenholme and Ljunggren. We further indicate that this approach generalizes to other supercongruence results. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14301 |