Quadrature rules from finite orthogonality relations for Bernstein-Szegö polynomials

We glue two families of Bernstein-Szegö polynomials to construct the eigenbasis of an associated finite-dimensional Jacobi matrix. This gives rise to finite orthogonality relations for this composite eigenbasis of Bernstein-Szegö polynomials. As an application, a number of Gauss-like quadrature rule...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2018-12, Vol.146 (12), p.5333-5347
Hauptverfasser: van Diejen, J. F., Emsiz, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5347
container_issue 12
container_start_page 5333
container_title Proceedings of the American Mathematical Society
container_volume 146
creator van Diejen, J. F.
Emsiz, E.
description We glue two families of Bernstein-Szegö polynomials to construct the eigenbasis of an associated finite-dimensional Jacobi matrix. This gives rise to finite orthogonality relations for this composite eigenbasis of Bernstein-Szegö polynomials. As an application, a number of Gauss-like quadrature rules are derived for the exact integration of rational functions with prescribed poles against the Chebyshev weight functions.
doi_str_mv 10.1090/proc/14186
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90026468</jstor_id><sourcerecordid>90026468</sourcerecordid><originalsourceid>FETCH-LOGICAL-a283t-58d2908227be90423d11198e0131ab1c0877174dc8fe85c1afaf02210ed4cc4f3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsb90I2boSxuZl0Jllq8Q8KItr1kGaSmjIzKTeZRX0wX8AXc2rFpavD4XycxUfIObBrYIpNNhjMBATI4oCMgEmZFZIXh2TEGOOZUrk6JicxrocKSpQjsnjpdY069Wgp9o2N1GFoqfOdT5YGTO9hFTrd-LSlaBudfOgGJiC9tdjFZH2XvX7Y1dcn3YRm24XW6yaekiM3hD37zTFZ3N-9zR6z-fPD0-xmnmku85RNZc0Vk5yXS6uY4HkNAEpaBjnoJRgmyxJKURvprJwa0E47xjkwWwtjhMvH5Gr_azDEiNZVG_Stxm0FrNoJqXZCqh8hA3yxh9cxBfwj1WCmEIUc9sv9rtv438832JFsDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quadrature rules from finite orthogonality relations for Bernstein-Szegö polynomials</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>van Diejen, J. F. ; Emsiz, E.</creator><creatorcontrib>van Diejen, J. F. ; Emsiz, E.</creatorcontrib><description>We glue two families of Bernstein-Szegö polynomials to construct the eigenbasis of an associated finite-dimensional Jacobi matrix. This gives rise to finite orthogonality relations for this composite eigenbasis of Bernstein-Szegö polynomials. As an application, a number of Gauss-like quadrature rules are derived for the exact integration of rational functions with prescribed poles against the Chebyshev weight functions.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14186</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>C. APPLIED MATHEMATICS ; Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2018-12, Vol.146 (12), p.5333-5347</ispartof><rights>Copyright 2018 American Mathematical Society</rights><rights>2018 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a283t-58d2908227be90423d11198e0131ab1c0877174dc8fe85c1afaf02210ed4cc4f3</citedby><cites>FETCH-LOGICAL-a283t-58d2908227be90423d11198e0131ab1c0877174dc8fe85c1afaf02210ed4cc4f3</cites><orcidid>0000-0002-5410-8717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2018-146-12/S0002-9939-2018-14186-6/S0002-9939-2018-14186-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2018-146-12/S0002-9939-2018-14186-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,799,828,23304,23308,27903,27904,57995,57999,58228,58232,77582,77584,77592,77594</link.rule.ids></links><search><creatorcontrib>van Diejen, J. F.</creatorcontrib><creatorcontrib>Emsiz, E.</creatorcontrib><title>Quadrature rules from finite orthogonality relations for Bernstein-Szegö polynomials</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>We glue two families of Bernstein-Szegö polynomials to construct the eigenbasis of an associated finite-dimensional Jacobi matrix. This gives rise to finite orthogonality relations for this composite eigenbasis of Bernstein-Szegö polynomials. As an application, a number of Gauss-like quadrature rules are derived for the exact integration of rational functions with prescribed poles against the Chebyshev weight functions.</description><subject>C. APPLIED MATHEMATICS</subject><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsb90I2boSxuZl0Jllq8Q8KItr1kGaSmjIzKTeZRX0wX8AXc2rFpavD4XycxUfIObBrYIpNNhjMBATI4oCMgEmZFZIXh2TEGOOZUrk6JicxrocKSpQjsnjpdY069Wgp9o2N1GFoqfOdT5YGTO9hFTrd-LSlaBudfOgGJiC9tdjFZH2XvX7Y1dcn3YRm24XW6yaekiM3hD37zTFZ3N-9zR6z-fPD0-xmnmku85RNZc0Vk5yXS6uY4HkNAEpaBjnoJRgmyxJKURvprJwa0E47xjkwWwtjhMvH5Gr_azDEiNZVG_Stxm0FrNoJqXZCqh8hA3yxh9cxBfwj1WCmEIUc9sv9rtv438832JFsDQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>van Diejen, J. F.</creator><creator>Emsiz, E.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5410-8717</orcidid></search><sort><creationdate>20181201</creationdate><title>Quadrature rules from finite orthogonality relations for Bernstein-Szegö polynomials</title><author>van Diejen, J. F. ; Emsiz, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a283t-58d2908227be90423d11198e0131ab1c0877174dc8fe85c1afaf02210ed4cc4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>C. APPLIED MATHEMATICS</topic><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Diejen, J. F.</creatorcontrib><creatorcontrib>Emsiz, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Diejen, J. F.</au><au>Emsiz, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadrature rules from finite orthogonality relations for Bernstein-Szegö polynomials</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>146</volume><issue>12</issue><spage>5333</spage><epage>5347</epage><pages>5333-5347</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We glue two families of Bernstein-Szegö polynomials to construct the eigenbasis of an associated finite-dimensional Jacobi matrix. This gives rise to finite orthogonality relations for this composite eigenbasis of Bernstein-Szegö polynomials. As an application, a number of Gauss-like quadrature rules are derived for the exact integration of rational functions with prescribed poles against the Chebyshev weight functions.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/14186</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5410-8717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2018-12, Vol.146 (12), p.5333-5347
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_14186
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
subjects C. APPLIED MATHEMATICS
Research article
title Quadrature rules from finite orthogonality relations for Bernstein-Szegö polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadrature%20rules%20from%20finite%20orthogonality%20relations%20for%20Bernstein-Szeg%C3%B6%20polynomials&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=van%20Diejen,%20J.%20F.&rft.date=2018-12-01&rft.volume=146&rft.issue=12&rft.spage=5333&rft.epage=5347&rft.pages=5333-5347&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14186&rft_dat=%3Cjstor_cross%3E90026468%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90026468&rfr_iscdi=true