Quadrature rules from finite orthogonality relations for Bernstein-Szegö polynomials
We glue two families of Bernstein-Szegö polynomials to construct the eigenbasis of an associated finite-dimensional Jacobi matrix. This gives rise to finite orthogonality relations for this composite eigenbasis of Bernstein-Szegö polynomials. As an application, a number of Gauss-like quadrature rule...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2018-12, Vol.146 (12), p.5333-5347 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We glue two families of Bernstein-Szegö polynomials to construct the eigenbasis of an associated finite-dimensional Jacobi matrix. This gives rise to finite orthogonality relations for this composite eigenbasis of Bernstein-Szegö polynomials. As an application, a number of Gauss-like quadrature rules are derived for the exact integration of rational functions with prescribed poles against the Chebyshev weight functions. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/14186 |