On regular 3-wise intersecting families

Ellis and the third author showed, verifying a conjecture of Frankl, that any 3-wise intersecting family of subsets of \{1,2,\dots ,n\} admitting a transitive automorphism group has cardinality o(2^n), while a construction of Frankl demonstrates that the same conclusion need not hold under the weake...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2018-10, Vol.146 (10), p.4091-4097
Hauptverfasser: FRANKSTON, KEITH, KAHN, JEFF, NARAYANAN, BHARGAV
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ellis and the third author showed, verifying a conjecture of Frankl, that any 3-wise intersecting family of subsets of \{1,2,\dots ,n\} admitting a transitive automorphism group has cardinality o(2^n), while a construction of Frankl demonstrates that the same conclusion need not hold under the weaker constraint of being regular. Answering a question of Cameron, Frankl, and Kantor from 1989, we show that the restriction of admitting a transitive automorphism group may be relaxed significantly: we prove that any 3-wise intersecting family of subsets of \{1,2,\dots ,n\} that is regular and increasing has cardinality o(2^n).
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/14153