One dimensional estimates for the Bergman kernel and logarithmic capacity

Carleson showed that the Bergman space for a domain on the plane is trivial if and only if its complement is polar. Here we give a quantitative version of this result. One is the Suita conjecture, established by the first-named author in 2012, and the other is an upper bound for the Bergman kernel i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2018-06, Vol.146 (6), p.2489-2495
Hauptverfasser: Błocki, Zbigniew, Zwonek, Włodzimierz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carleson showed that the Bergman space for a domain on the plane is trivial if and only if its complement is polar. Here we give a quantitative version of this result. One is the Suita conjecture, established by the first-named author in 2012, and the other is an upper bound for the Bergman kernel in terms of logarithmic capacity. We give some other estimates for those quantities as well. We also show that the volume of sublevel sets for the Green function is not convex for all regular non-simply connected domains, generalizing a recent example of Fornæss.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13916