Vanishing simplicial volume for certain affine manifolds

We show that closed aspherical manifolds supporting an affine structure, whose holonomy map is injective and contains a pure translation, must have vanishing simplicial volume. As a consequence, these manifolds have zero Euler characteristic, satisfying the Chern Conjecture. Along the way, we provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2018-03, Vol.146 (3), p.1287-1294
Hauptverfasser: Bucher, Michelle, Connell, Chris, Lafont, Jean-François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that closed aspherical manifolds supporting an affine structure, whose holonomy map is injective and contains a pure translation, must have vanishing simplicial volume. As a consequence, these manifolds have zero Euler characteristic, satisfying the Chern Conjecture. Along the way, we provide a simple cohomological criterion for aspherical manifolds with normal amenable subgroups of π1\pi _1 to have vanishing simplicial volume. This answers a special case of a question due to Lück.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13799