Simons' equation and minimal hypersurfaces in space forms
Let n\geq {}3 be an integer, and let \Sigma ^n be a non-totally geodesic complete minimal hypersurface immersed in the (n+1)-dimensional space form \overline {M}^{n+1}(c), where the constant c denotes the sectional curvature of the space form. If \Sigma ^n satisfies the Simons' equation (3.9),...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2018-01, Vol.146 (1), p.369-383 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 383 |
---|---|
container_issue | 1 |
container_start_page | 369 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 146 |
creator | WANG, BIAO |
description | Let n\geq {}3 be an integer, and let \Sigma ^n be a non-totally geodesic complete minimal hypersurface immersed in the (n+1)-dimensional space form \overline {M}^{n+1}(c), where the constant c denotes the sectional curvature of the space form. If \Sigma ^n satisfies the Simons' equation (3.9), then either (1) \Sigma ^n is a catenoid if c\leq {}0, or (2) \Sigma ^n is a Clifford minimal hypersurface or a compact Ostuki minimal hypersurface if c>0. This paper is motivated by a 2009 work of Tam and Zhou. |
doi_str_mv | 10.1090/proc/13781 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_13781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90016433</jstor_id><sourcerecordid>90016433</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-1ecd05191130013490fc28cffa5861b1ae255d5f3ec80cc3671e2ecc17fcf7423</originalsourceid><addsrcrecordid>eNp9j81LAzEQxYMoWKsX70IuIghrM8l-JEcp9QMKHtTzEmcT3NLdrJntof-9qSsePc0M78d78xi7BHEHwojFEAMuQFUajtgMhNZZqWV5zGZCCJkZo8wpOyPapBNMXs2YeW270NMNd187O7ah57ZveNf2bWe3_HM_uEi76C064m3PaUgb9yF2dM5OvN2Su_idc_b-sHpbPmXrl8fn5f06swrMmIHDRhRgAFTKVLkRHqVG722hS_gA62RRNIVXDrVAVGUFTjpEqDz6Kpdqzm4nX4yBKDpfDzE9F_c1iPpQuj6Urn9KJ_hqgjc0hvhHmhRd5kol_XrSbUf_-XwDJfNgPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simons' equation and minimal hypersurfaces in space forms</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>WANG, BIAO</creator><creatorcontrib>WANG, BIAO</creatorcontrib><description>Let n\geq {}3 be an integer, and let \Sigma ^n be a non-totally geodesic complete minimal hypersurface immersed in the (n+1)-dimensional space form \overline {M}^{n+1}(c), where the constant c denotes the sectional curvature of the space form. If \Sigma ^n satisfies the Simons' equation (3.9), then either (1) \Sigma ^n is a catenoid if c\leq {}0, or (2) \Sigma ^n is a Clifford minimal hypersurface or a compact Ostuki minimal hypersurface if c>0. This paper is motivated by a 2009 work of Tam and Zhou.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/13781</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>D. GEOMETRY</subject><ispartof>Proceedings of the American Mathematical Society, 2018-01, Vol.146 (1), p.369-383</ispartof><rights>Copyright 2017, American Mathematical Society</rights><rights>2018 by the American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a319t-1ecd05191130013490fc28cffa5861b1ae255d5f3ec80cc3671e2ecc17fcf7423</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2018-146-01/S0002-9939-2017-13781-2/S0002-9939-2017-13781-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2018-146-01/S0002-9939-2017-13781-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23324,23328,27924,27925,58017,58021,58250,58254,77836,77838,77846,77848</link.rule.ids></links><search><creatorcontrib>WANG, BIAO</creatorcontrib><title>Simons' equation and minimal hypersurfaces in space forms</title><title>Proceedings of the American Mathematical Society</title><description>Let n\geq {}3 be an integer, and let \Sigma ^n be a non-totally geodesic complete minimal hypersurface immersed in the (n+1)-dimensional space form \overline {M}^{n+1}(c), where the constant c denotes the sectional curvature of the space form. If \Sigma ^n satisfies the Simons' equation (3.9), then either (1) \Sigma ^n is a catenoid if c\leq {}0, or (2) \Sigma ^n is a Clifford minimal hypersurface or a compact Ostuki minimal hypersurface if c>0. This paper is motivated by a 2009 work of Tam and Zhou.</description><subject>D. GEOMETRY</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j81LAzEQxYMoWKsX70IuIghrM8l-JEcp9QMKHtTzEmcT3NLdrJntof-9qSsePc0M78d78xi7BHEHwojFEAMuQFUajtgMhNZZqWV5zGZCCJkZo8wpOyPapBNMXs2YeW270NMNd187O7ah57ZveNf2bWe3_HM_uEi76C064m3PaUgb9yF2dM5OvN2Su_idc_b-sHpbPmXrl8fn5f06swrMmIHDRhRgAFTKVLkRHqVG722hS_gA62RRNIVXDrVAVGUFTjpEqDz6Kpdqzm4nX4yBKDpfDzE9F_c1iPpQuj6Urn9KJ_hqgjc0hvhHmhRd5kol_XrSbUf_-XwDJfNgPg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>WANG, BIAO</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180101</creationdate><title>Simons' equation and minimal hypersurfaces in space forms</title><author>WANG, BIAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-1ecd05191130013490fc28cffa5861b1ae255d5f3ec80cc3671e2ecc17fcf7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>D. GEOMETRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, BIAO</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, BIAO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simons' equation and minimal hypersurfaces in space forms</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>146</volume><issue>1</issue><spage>369</spage><epage>383</epage><pages>369-383</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Let n\geq {}3 be an integer, and let \Sigma ^n be a non-totally geodesic complete minimal hypersurface immersed in the (n+1)-dimensional space form \overline {M}^{n+1}(c), where the constant c denotes the sectional curvature of the space form. If \Sigma ^n satisfies the Simons' equation (3.9), then either (1) \Sigma ^n is a catenoid if c\leq {}0, or (2) \Sigma ^n is a Clifford minimal hypersurface or a compact Ostuki minimal hypersurface if c>0. This paper is motivated by a 2009 work of Tam and Zhou.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/13781</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2018-01, Vol.146 (1), p.369-383 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_13781 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
subjects | D. GEOMETRY |
title | Simons' equation and minimal hypersurfaces in space forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simons'%20equation%20and%20minimal%20hypersurfaces%20in%20space%20forms&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=WANG,%20BIAO&rft.date=2018-01-01&rft.volume=146&rft.issue=1&rft.spage=369&rft.epage=383&rft.pages=369-383&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/13781&rft_dat=%3Cjstor_cross%3E90016433%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90016433&rfr_iscdi=true |