Simons' equation and minimal hypersurfaces in space forms
Let n\geq {}3 be an integer, and let \Sigma ^n be a non-totally geodesic complete minimal hypersurface immersed in the (n+1)-dimensional space form \overline {M}^{n+1}(c), where the constant c denotes the sectional curvature of the space form. If \Sigma ^n satisfies the Simons' equation (3.9),...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2018-01, Vol.146 (1), p.369-383 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let n\geq {}3 be an integer, and let \Sigma ^n be a non-totally geodesic complete minimal hypersurface immersed in the (n+1)-dimensional space form \overline {M}^{n+1}(c), where the constant c denotes the sectional curvature of the space form. If \Sigma ^n satisfies the Simons' equation (3.9), then either (1) \Sigma ^n is a catenoid if c\leq {}0, or (2) \Sigma ^n is a Clifford minimal hypersurface or a compact Ostuki minimal hypersurface if c>0. This paper is motivated by a 2009 work of Tam and Zhou. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13781 |