Isometric embeddings of snowflakes into finite-dimensional Banach spaces

We consider a general notion of snowflake of a metric space by composing the distance with a nontrivial concave function. We prove that a snowflake of a metric space XX isometrically embeds into some finite-dimensional normed space if and only if XX is finite. In the case of power functions we give...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2018-02, Vol.146 (2), p.685-693
Hauptverfasser: Le Donne, Enrico, Rajala, Tapio, Walsberg, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a general notion of snowflake of a metric space by composing the distance with a nontrivial concave function. We prove that a snowflake of a metric space XX isometrically embeds into some finite-dimensional normed space if and only if XX is finite. In the case of power functions we give a uniform bound on the cardinality of XX depending only on the power exponent and the dimension of the vector space.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13778