A non-associative Baker-Campbell-Hausdorff formula
We address the problem of constructing the non-associative version of the Dynkin form of the Baker-Campbell-Hausdorff formula; that is, expressing \log (\exp (x)\exp (y)), where x and y are non-associative variables, in terms of the Shestakov-Umirbaev primitive operations. In particular, we obtain a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2017-12, Vol.145 (12), p.5109-5122 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We address the problem of constructing the non-associative version of the Dynkin form of the Baker-Campbell-Hausdorff formula; that is, expressing \log (\exp (x)\exp (y)), where x and y are non-associative variables, in terms of the Shestakov-Umirbaev primitive operations. In particular, we obtain a recursive expression for the Magnus expansion of the Baker-Campbell-Hausdorff series and an explicit formula in degrees smaller than 5. Our main tool is a non-associative version of the Dynkin-Specht-Wever Lemma. A construction of Bernouilli numbers in terms of binary trees is also recovered. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13684 |