A non-associative Baker-Campbell-Hausdorff formula

We address the problem of constructing the non-associative version of the Dynkin form of the Baker-Campbell-Hausdorff formula; that is, expressing \log (\exp (x)\exp (y)), where x and y are non-associative variables, in terms of the Shestakov-Umirbaev primitive operations. In particular, we obtain a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2017-12, Vol.145 (12), p.5109-5122
Hauptverfasser: MOSTOVOY, J., PÉREZ-IZQUIERDO, J. M., SHESTAKOV, I. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the problem of constructing the non-associative version of the Dynkin form of the Baker-Campbell-Hausdorff formula; that is, expressing \log (\exp (x)\exp (y)), where x and y are non-associative variables, in terms of the Shestakov-Umirbaev primitive operations. In particular, we obtain a recursive expression for the Magnus expansion of the Baker-Campbell-Hausdorff series and an explicit formula in degrees smaller than 5. Our main tool is a non-associative version of the Dynkin-Specht-Wever Lemma. A construction of Bernouilli numbers in terms of binary trees is also recovered.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13684